Complexity of Nilpotent Orbits and the Kostant-sekiguchi Correspondence

نویسنده

  • DONALD R. KING
چکیده

Let G be a connected linear semisimple Lie group with Lie algebra g, and let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. Suppose that Ω is a nilpotent G-orbit in g and O is the nilpotent K C -orbit in p C associated to Ω by the Kostant-Sekiguchi correspondence. We show that the complexity of O as a K C variety measures the failure of the Poisson algebra of smooth K-invariant functions on Ω to be commutative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Nilpotent Orbits and the Kostant-sekiguchi Correspondence

Let G be a connected, linear semisimple Lie group with Lie algebra g, and let KC → Aut(pC ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. The Kostant-Sekiguchi correspondence is a bijection between the nilpotent KC -orbits in pC and the nilpotent G-orbits in g. We show that this correspondence associates each spherical nilpotent KC -orbi...

متن کامل

Nilpotent Orbits and Theta-stable Parabolic Subalgebras

In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra g under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on pC , the “complex symmetric space associated with g”. The Kostant-S...

متن کامل

Minimal coadjoint orbits and symplectic induction

Let (X,ω) be an integral symplectic manifold and let (L,∇) be a quantum line bundle, with connection, over X having ω as curvature. With this data one can define an induced symplectic manifold (X̃, ω X̃ ) where dim X̃ = 2 + dimX . It is then shown that prequantization on X becomes classical Poisson bracket on X̃ . We consider the possibility that if X is the coadjoint orbit of a Lie group K then X̃ ...

متن کامل

Unitary representations of reductive Lie groups

One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem nally is to \quantize" nilpotent coadjoint orbits.

متن کامل

Lectures of Roger Bielawski given at the Summer School on Algebraic Groups

The Nahm equations are a powerful tool for constructing hyperkähler metrics on various algebraic manifolds, e.g. spaces of rational maps, coadjoint orbits, resolutions of Kleinian singularities. In these lectures I shall concentrate on their relation to semisimple algebraic groups and adjoint orbits. The aim is to show that, on the one hand, the Nahm equations provide a powerful tool for constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003